M.Sc. Physics Semester – 1 Examination Phys-C-101 - {Classical Mechanics}

Paper Code: 22923

Time: 01 Hrs 30 Min.

1 7 FEB 2021

Maximum Marks: 42

Note: Answer any three questions. Figures to the right indicate marks allotted.

All symbols have their usual meaning.

Q.1	a	Discuss variation technique of calculus, and derive Euler-Lagrange's equation of	07
Q.1	а	motion.	
	b	Explain how symmetry property of time leads to the conservation of energy.	05
	c	Write two advantages of variation principle over the Lagrange's approach.	02
		OR	
Q.1	a	State Hamilton's principle and derive Hamilton's equations of motion.	07
	b	Determine relation between infinitesimal Canonical transformation and Poisson	07
		brackets.	
Q.2	a	Derive Hamilton-Jacobi equations. Show that Hamilton's principal function can be written as indefinite time integral of Lagrangian plus a constant term.	07
	b	Consider a particle of mass m in a central force field with $H = \frac{1}{2m} \left(p_r^2 + \frac{p_2^2}{r^2} \right) + V(r)$.	07
		Using <i>separation of variables</i> method, derive an expression for its orbit (i.e. variable φ).	
		OR	_
Q.2	a	Solve the problem of simple harmonic oscillator using Hamilton-Jacobi equation.	07
	b	Write detailed note on action—angle variables technique. Does it useful for non-periodic system?	07
Q.3	a	Consider a rigid body with one point fixed (≡ origin, say) and rotating with angular	07
		velocity ω . Derive an expression for torque acting on the body in <i>fixed</i> frame of reference, and hence the Euler's equations of motion. Prove that when torque acting on	
		the body is zero, kinetic energy is conserved.	0.6
	b	Write note on Euler's angles and derive total transformation matrix. Write one property of this transformation matrix.	06
	c	Write constraint on the rigid body with one point fixed.	01
	+	OR	
Q.3	a	What is inertia tensor? Define inertia tensor for continuous distribution of mass. Give its properties. Classify different types of rotation motion of a top.	07
	b	For the case of rigid body, derive expressions for kinetic energy and angular momentum.	07
	1		
Q.4	a	Discuss different types of equilibrium. Expand potential energy about the equilibrium state to lowest order to find matrix relations $V = \frac{1}{2} \mathbf{q}^{\dagger} V \mathbf{q}$ and $T = \frac{1}{2} \dot{\mathbf{q}}^{\dagger} T \dot{\mathbf{q}}$. Hence derive	07
		$\sum_{j} \left[T_{jk} \ddot{q}_j + V_{jk} q_j \right] = 0.$	

	b		07
		expressions for eigen frequencies and eigen vectors.	
		OR	
Q.4	a	Discuss orthogonality of the eigenvectors describing coupled oscillations. Give importance of normal coordinates in dealing with coupled oscillations.	07
	b	Using two roots ω_s and ω_r of the secular equation $\sum_{j=1}^n (V_{jk} - T_{jk}\omega^2) a_{jk} = 0$, draw your conclusion regarding vector eigen vector \vec{a}_r .	06
	c	Write necessary mathematical condition for equilibrium to be unstable.	01