NOV-2014

DEPARTMENT OF STATISTICS

M.Sc. SEMESTER-I EXAMINATION

PAPER: 3 - INFERENCE-I (THEORY OF ESTIMATON) - 2754

MARKS: 70 DURATION: 2.5 HOURS

Q-1 (A)	Define the following terms: (1) Consistency (2) Statistic (3) Trivial Statistic	(6)		
	(4) Parameter (5) Unbiasedness (6) Sufficiency Principle			
Q-1 (B)	State and prove Rao-Blackwell Theorem.	(8)		
OR				
Q-1 (A)	Define the following terms: (1) MVUE (2) UMVUE (3) Standard Error	(6)		
	(4) Estimator (5) Complete Statistic (6) Statistical Inference			
Q-1 (B)	State and prove Neyman Fisher Factorization Theorem.	(8)		
Q-2 (A)	State and prove Lehmann Scheffe Theorem.	(7)		
Q-2 (B)	State and prove Cramer-Rao Inequality.	(7)		
OR				
Q-2 (A)	Write a detailed note on Fisher's Information.	(7)		
Q-2 (B)	State and prove Chapman-Robin's Inequality.	(7)		
Q-3 (A)	Define Likelihood function and MLE. State it's six properties.	(7)		

Q-3 (B)	Obtain the most general form of the distribution having M parameter θ equal to the sample mean.	LE of the (7)
	OR	
Q-3 (A)	Explain the method of minimum chi square.	(7)
Q-3 (B)	Obtain moment estimates for θ_1 and θ_2 on a random sample 'n' for $X \sim U(\theta_1, \theta_2)$.	e of size (7)
Q-4 (A)	Explain ZOLF, GELF and LLF in detail.	(6)
Q-4 (B)	Write a short note on Bayes Estimation.	(8)
	OR	
Q-4 (A)	Explain the following terms:	(6)
	(1) Prior p.d.f. (2) Posterior p.d.f. (3) Loss function	
Q-4 (B)	Let $g(t/\theta)$ be the p.d.f. of a sufficient statistic 't' for θ and the prior distribution of θ , then prove that the marginal distribution by $m(t) = \int_{\Omega} g(t/\theta) \pi(\theta) d\theta$ and the posterior distribution is $P(\theta/x) = h(\theta/t) = g(t/\theta) \cdot \pi(\theta)$	ribution of
	$\int_{\Omega} \ g(t/ heta) \ \pi(heta) d heta$	
Q-5 (A)	Explain the following terms: (1) Fiducial Interval (2) UMA Confidence Set	(6)
	(3) UMAU Confidence Set	
Q-5 (B)	Define Ancillary Statistic and First Order Ancillarity. Let $X \sim F_x(x - \theta)$ which is a location parameter family. Prove that sample range is ancillary statistic.	(8)
	OR	

www.mkbuonline.com

- Q-5 (A) It is known that the 95% confidence limits for population mean are 48.04 and 51.96. What is the value of population variance if the sample size is 100? (6)
- Q-5 (B) State and prove Basu's Theorem. (8)
