Code: 2752

M.Sc.(Sem. -I) EXAMINATION - No V- 2015

STATISTICS :PARER 01

Linear Algebra

TIME : Two Hours. TOTAL MA			:70
Note	e: (i)	All Questions are Compulsory	
	(ii)	All Full Questions carry equal marks.	
1.	(a)	For any two matrices $A_{p \times m}$ and $B_{p \times n}$ prove that	8
	(b)	$rank(A,B) \le Min[\rho(A),\rho(B)]$ Explain (i)linearly independent (ii)linearly dependent (iii) basis (iv) orthogonal vector	6
		OR	
1.	(a)	Show that square matrix A is non-singular iff all its columns are linearly independent	8
	(b)	For any two matrices $A_{p \times m}$ and $B_{p \times n}$ prove that	6
		$Max[\rho(A),\rho(B)] \le rank(A,B) \le rankA + rankB$	
2.	(a)	If $P = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$ is a partitioned nonsingular matrix where A is non Singular then derive P^{-1}	8
	(b)	Show that the system of linear non-homogeneous equation $A\underline{x} = \underline{b}$ is consistent, if ρ (A, b)= ρ (A).	6
2.	(a)	Show that for matrix $A_{n\times n}$ Rank(A)+ Rank(I-A) -n= Rank((I-A) A)	8
	(b)	For any two matrices \boldsymbol{A} and \boldsymbol{B} prove that $\boldsymbol{\rho}$ (AB)= $\boldsymbol{\rho}$ (BA)=. $\boldsymbol{\rho}$ (A) , B is non-singular.	6

3.	(a)	Show that matrix $A_{m\times n}$ is idempotent matrix iff Rank(A)+ Rank(I-A) = n	6
	(b)	Show that \overline{A} exists iff $A \overline{A} A = A$	8
		OR	
3	(a)	Explain types of g-inverse	6
	(b)	Reduce the symmetric matrix	8
		$A = \begin{bmatrix} 4 & 2 & 1 \\ 3 & 1 & 0 \\ 1 & 0 & -1 \end{bmatrix}$ to a diagonal matrix D.	
4.	(a)	Let \overline{A} be any g-inverse of A and $H=\overline{A}A$, then prove that general solution of a consistent non-homogeneous equation $Ax=y$ is $x=\overline{A}y+(i-H)z$, z is any arbitrary vector.	8
	(b)	Show that \overline{A} exists iff $H=\overline{A}A$ is idempotent OR	6
4.	(a) (b)	Write a note on(i) Types of Quadratic form Show that $\{(1,1,0),(1,0,1),(0,1,1)\}$ is a basis of $V_3(R)$.	8
5	(a) (b)	Explain Gram Smith orthogonalization process Reduce the quadratic form	6 8
		$Q=x_1^2+2x_2^2-x_3^2-12x_1x_2-4x_1x_3$ to its	
		diagonal forms and determine its	
		types.	
		OR	
5	(a)	Define Moore-Penrose g-inverse of a matrix. Prove that it is unique.	8
	(b)	Define following terms (i) equivalence of Quadratic forms (ii) Quadratic forms (iii)Rank of Quadratic form (iv Normal form of Quadratic form (v) Signature of Quadratic form (vi)Diagonal form of a Quadratic form.	6