Seat	No.		
------	-----	--	--

M.Sc.(IT) Semester -2 Examination(OLD-CBCS) Paper No-6: Linear Algebra.

[Time	e: 02:30 Hours]	[Total Marks: 70]
Q:1	[a] Define L.D., L.I., Span of Set, Basis.	[7]
	[b] Check whether the vectors {(1,2,1),(-1,1,0),(5,-1,2)} are L.I or	not. [7]
	OR	
Q:1	[a] Define vector space with an example.	[7]
	[b] Let S be a non-empty subset of vector space V then S is a subs	pace of V if
	$\alpha u + \beta v \in S$ for all scalars α , $\ \beta$ and for all $u,v \in S.$	[7]
Q:2	[a] Let T: $R^2 \rightarrow R^3$ be a linear map defined as $T(x,y)=(x,y,x+y)$ pro T is Linear map.	ve that
	[b] IF T:R ³ \rightarrow R ² defined by T(a,b,c)=(2a+b-c,3a-2b+4c) and B1={(1,1,1),(1,1,0),(1,0,0)} and B2={(1,3),(1,4)} then find [T	:B1,B2] [7]
	OR	
Q:2	[a] Define L.T. and Isomorphism with an example.	[7]
	[b] Let T: $R^3 \rightarrow R^3$ be a L.T. defined by $T(x,y,z)=(2x-y,2y-z,2x-z)$.	Find Ker T and
	Image T.	[7]
Q:3	[a] If a triangle is a isosceles then the medians of the two sides of	equal length
	are of equal.	
	[b] Find reflection with respect to X axis of $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$	[7]
	OR	
Q:3	[a] Prove that an angle inscribed by semicircle is an right angle.	[7]
	[b] Define for a matrix (1) row space (2) column space (3) row ra	nk [7]
Q:4	[a] Define IPS with an example.	[7]
	[b] If $x,y \in R^2$ $x=(x1,x2)$, $y=(y1,y2)$. Verify that $(x,y)= x+y $ is a	n IPS or not. [7]
	0.75	

Q:4	[a] Find angle between given two vectors:	[7]
	(1) (1,0) and (0,2) (2) (-x,y) and (y,x)	
	[b] Let V be an IPS the norm $f^h \parallel \parallel : V \rightarrow R$ has the following properties:	[7]
	(i) $ x \ge 0$ and $ x = 0$ iff $x = 0$, for all $x \in V$	
	(ii) $ \alpha x = \alpha x $, for all $x \in V$ and $\alpha \in R$	
Q:5	state and prove Gram-Schmidt theorem.	[14]
	OR	C7]
Q:5	[a] Define - Prove that any Osthonormal basis?	s orthogonal
	[b] Apply Gram-Schmidt orthonormalization process to obtain orthonormal set $\{(3,0,4),(-1,0,7),(2,9,4)\}$	set from the [7]