Apond reside

M.sc Mathematics

Semester - II , Paper No: 08

code No: 3118

Classical Mechanics

- (1) Each question carry equal marks
- (2) All questions are compulsory

Q.1 (a) Derive conservation theorem for linear momentum for a system of particle.	[7]
(b) Derive Kepler's third law of motion.	[7]
OR	
Q.1 (a) Show that the angular momentum is conserved in motion under central force.	[7]
(b) Find the nature of force if $W = x^2y - xz^3 - z$.	[7]
Q.2 (a) Discuss with all details 'principle of virtual work'.	[7]
(b) Derive D'Alembert's principle.	[7]
OR	
Q.2 Explain how the problem of two bodies, moving under the influence of a mutual cent	ral
force can be reduced to a one – body problem.	[14]
Q.3 (a) Find the central of force under the action of which a particle will follow an orbit	
described by $r = a(1 + \cos \theta)$.	[7]
(b) Derive Kepler's second law of motion.	[7]
OR	•
Q.3 (a) In the case of particle's motion define (i) linear momentum (ii) Angular momen	tum
(iii) Torque about a point (iv) Work done by a force field (v) Conservative force	e
field.	[7]
(b) Discuss Atwood's machine.	[7]
Q.4 In usual notations prove $\sum_{j} \left[\frac{d}{dt} \left(\frac{\partial L}{\partial q_{j}} \right) - \frac{\partial L}{\partial q_{j}} \right] = 0.$	[14]
OR	
Q.4 (a) Show that if q_k is cyclic then p_k is conserved.	[7]
(b) Find the equation of motion of one dimensional harmonic oscillator using Langra	ıngian.
Also solve it.	[7]
Q.5 (a) Discuss the Hamiltonian function H and state Hamilton's principle.	[7]
(b) Define poission's brackets and in usual notation prove the following results	[7]
(i) $[x, y+z] = [x, y] + [x, z]$	
(ii) $[x, yz] = y[x, z] + [x, y]z$	

OR

- Q.5 (a) Show that the transformations $P = \frac{1}{2}(p^2 + q^2)$, $Q = \tan^{-1}\frac{q}{p}$ is canonical. [7]
 - (b) Find the value of α and β so that the equations [7]

$$Q = q^{\alpha} \cos \beta p$$

$$P = q^{\alpha} \sin \beta p$$

represent a canonical transformation.