M.Sc. Semester - 2

April -2015. Examination

Paper - 6: Linear Algebra

Time: 2 1/2 Hours

Code - 4758

Total Marks: 70

Q.1 (a) Let V be a vector space over R then prove that

[7]

(i) $0 \cdot x = \theta$ (ii) $(-1) \cdot x = -x \quad \forall x \in V$ (iii) $\alpha \cdot \theta = \theta \quad \forall \alpha \in R$

7

(b) Check whether the following subsets of R² are vector subspace or not?

(i) $\{(x, y) \in R^2 \mid x_1 x_2 = 0\}$

(ii) $\{(x, y) \in \mathbb{R}^2 \mid 3x_1 + 2x_2 = 0\}$

Q.1 (a) Find all solutions to the following system of equations by row-reducing the coefficient matrix:

[7]

$$\frac{1}{3}x_1 + 2x_2 - 6x_3 = 0$$

$$-4x_1 + 5x_3 = 0$$

$$-3x_1 + 6x_2 - 13x_3 = 0$$

$$\frac{-7}{3}x_1 + 2x_2 - \frac{8}{3}x_3 = 0$$

(b) Prove that any basis of a vector space is linearly independent set.

[7]

Q.2 (a) State and prove Laplace expansion:

Find matrix associated with the following linear transformations with respect to the standard basis:

[7] [7]

- (i) T: $R^2 \rightarrow R^3$ defined as $T(x, y) = (x, x + y, y), \forall (x, y) \in R^2$
- (ii) T: $R^3 \rightarrow R^3$ defined as $T(x, y, z) = (x + z, x + y + 2z, 2x + y + 3z), \forall (x, y, z) \in R^3$

Q.2 (a) Check whether the following maps are linear or not?

[7]

- (i) T: $R^2 \rightarrow R^2$ defined as $T(x, y) = (x 2, y), \forall (x, y) \in R^2$.
 - (ii) T: $R^3 \rightarrow R^3$ defined as $T(x, y, z) = (x + y + z, 2x + y, x y + z), \forall (x, y, z) \in R^3$.

(b)		(1	5	0	0)	[7]
	Using definition, find det(A) for the matrix A	2	0	8	0	
		3	6	9	0	
		4	7	10	1]	
(- \	multiple of the second					

Q.3 (a) Explain the following terms:

[7]

- (i) Monic polynomial (ii) Triangulation (iii) Direct sum of matrices.
- Find eigen values and corresponding eigen vectors of the matrix $\begin{bmatrix} 0 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 3 \end{bmatrix}$. (b) [7]

OR

Q.3 (a) State and prove Cayley – Hamilton theorem.

[7]

(b) Let V be a finite dimensional inner product space. If T and U are linear operators on V and $\alpha \in R$ then prove that

[7]

- (i) $(\alpha \ T)^* = \alpha \ T^*$ (ii) $(TU)^* = U^*T^*$ (iii) $(T^*)^* = T$.
- Q.4 (a) Check whether the following products are inner product on V or not? [7] (i) $V = R^2$, $\langle x, y \rangle = y_1 (x_1 + 2x_2) + y_2 (2x_1 + 5x_2)$, where $x = (x_1, x_2)$, $y = (y_1, y_2) \in R^2$. (ii) V = R, $\langle x, y \rangle = |x - y|$, $\forall x, y \in V$
 - (b) Obtain orthogonal set from the set $\{ (-1, 0, 1), (1, -1, 0), (0, 0, 1) \}$. [7]

OR

Q.4 Prove that every inner product space has an orthonormal basis.

[14]

- Q.5 (a) Define: (i) Adjoint of a linear operator
- (ii) Self adjoint operator

[7]

- (iii) Unitary operator
- (iv) Normal operator
- (b) Let V be a finite dimensional inner product space and T be a normal operator [7] on V. Suppose $v \in V$. Then prove that v is a characteristic vector for T with characteristic value $\,\lambda\,$ if and only if v is a characteristic vector for T * with characteristic value $\overline{\lambda}$.

OR

- Q.5 (a) Let U be a linear operator on an inner product space V. Prove that U is unitary [7] if and only if U^* exists and $UU^* = U^*U = I$.

(b) State and prove spectral theorem.

[7]