M. Sc. Semester-III (MATHEMATICS) Paper 12: Analytic Number Theory-I

Marks:70

- Q-1. (a) Prove that $\sum_{d|n} \mu(d) = \left[\frac{1}{n}\right]$, for all positive integer n. [7]
 - (b) Define: Dirichlet product *. Show that it is commutative and associative. [7]

OR

- Q-1. (a) Prove that $\sum_{d|n} \varphi(d) = n$, for all positive integer n. [7]
 - (b) If f is an arithmetical function (a.f.) with $f(1) \neq 0$, then show that there exists an a.f. g such that f * g = I.
- Q-2. (a) Prove that $\Lambda(n) + \sum_{d|n} \mu(d) \log d = 0$, for all positive integer n. [7]
 - (b) Find the Bell series of the Euler's function λ . [7]

OR

- Q-2. (a) Find the Bell series of the Euler's function φ . [7]
 - (b) State and prove Selberg Identity. [7]
- Q-3. (a) For all $x \ge 1$, show that $\sum_{n \le x} \frac{1}{n} = \log x + C + O(\frac{1}{x})$, where C is Euler's constant. [7]
 - (b) For all $x \ge 1$, show that $\sum_{n \le x} d(n) = x \log x + (2C 1)x + O(\sqrt{x})$. [7]

OR

- Q-3. (a) For all $x \ge 1$, show that $\sum_{n \le x} \frac{1}{n^s} = \frac{x^{1-s}}{1-s} + \zeta(s) + O(x^{-s})$, where s > 0, $s \ne 1$. [7]
 - For all $x \ge 2$, show that $\sum_{2 \le n \le x} \frac{1}{n \log n} = \log(\log x) + K + O(\frac{1}{x \log x})$, where K is a constant. [7]

Q-4. (a) For all
$$x \ge 2$$
, show that
$$\sum_{\substack{p, prime \\ p \le x}} \left[\frac{x}{p} \right] \log p = x \log x + \mathrm{O}(x).$$
 [7]

(b) For all
$$x \ge 1$$
, show that $\left| \sum_{n \le x} \frac{\mu(n)}{n} \right| \le 1$. [7]

OR

Q-5. Prove: the relation
$$M(x) = o(x)$$
 as $x \to \infty$ implies $\psi(x) \sim x$ as $x \to \infty$. [14]

OR

Q-5. Let
$$A(x) = \sum_{n \le x} \frac{\mu(n)}{n}$$
. Prove that the relation $A(x) = 0(x)$ as $x \to \infty$ implies the prime number theorem.

