	M.sc Mathematics Semester – III C.N	No : 3471	
	Sme-2930 Paper No: 10 Relative - I M	Marks: 70	
Q.1	(a) State and prove Gauss-flux theorem.	[7]	
	(b) Prove that if a closed equipotential surface contains no charge, the potential is cons	tant	
	through out the surface.	[7]	
	OR		
Q.1	(a) Discuss principle of superposition.	[7]	
	(b) Discuss with all details electric dipole.	[7]	
Q.2	(a) Discuss Faraday's law of induction .	[7]	
	(b) Assuming that the charge distribution has spherically symmetric, solve $\nabla^2 \phi = 0$	using	
	the method of separation of variables.	[7]	
	the method of separation of variables. OR OR		
Q.2	(a) Discuss with all details gauge's transformations.	[7]	
	(b) in very large transfer $\overline{A} = 1 \partial \overline{A}$		
	(b) in usual notation derive $\overline{E} = -\frac{1}{c} \cdot \frac{\partial \overline{A}}{\partial t} - \nabla \phi$	[7]	
Q. 3	In usual notation derive $F_{ij,k} + F_{jk,i} + F_{ki,j} = 0$	[14]	
	OR		
Q.3	(a) Discuss Michelson-Morley experiment and explain outcome of this experiment.	[14]	
Q. 4	(a) Show that $x^2 + y^2 + z^2 - c^2 t^2$ is invariant under Lorentz's transformation.	[7]	
	(b) Write a short note on time dilation.	[7]	
	OR	L	
Q.4	(a) Show that $-dx^2 - dy^2 - dz^2 + c^2 dt^2$ is invariant under Lorentz's transformation.	[7]	
	(b) Obtain the relativistic formulae for the composition of velocities.	[7]	
		r.1	

Q. 5	(a) Obtain Lorentz's transformation and show that they form a group.	[14]
	OR	
Q.5	(a) Obtain Galilean transformation.	[7]
	(b) Write a short note on Length contraction.	[7]

www.rokonorline.com