M.Sc (Physics) Examination Semester – 3 Phys – C303 Condensed Matter and Material Physics Paper code: 4705

Time 2Hrs 30 Min

Max Marks: 70

Attempt all questions. Figures to the right indicate marks

D. 1 [b] What is Specific heat? Obtain an expression of specific heat capacity of a solid i	[07] using [07]
Q. 1 [a] Define Brillouin zone, reciprocal lattice and steps to construct the reciprocal lattice. Q. 1 [b] Calculate the interplanar spacing between two lattice planes which gives first order diffraction at an angle of 26.42 Angstrom with x-rays of wavelength 0.71 Angstrom.	. [07] [07]
Q. 2 [a] On basis of free electron theory, derive an expression for electrical and thermal conductivity in metals. Q. 2 [b] With a schematic explain Hall – effect. OR	[07] [07]
Q. 2 [a] Differentiate between Fermi Surface and Brillouin zone. What inference do you drage from a spherical and ellipsoidal Fermi surface?Q. 2 [b] Explain Nearly free electron model and tight binding model	w [07] [07]
Q. 3 [a] Write a detailed note on a Ferroelectricity. Q. 3 [b] Explain Tunneling and Josephson effect in detail. OR	[07] [07]
Q. 3 [a] Explain the terms: (1)Dielectric constant (2) Polarizability (3) Ionic Polarizability Dipolar polarizability (5) Electronic polarizability with proper example and necessary fig.	ty (4) gures. [07] [07]
 Q. 3 [b] Derive the Clausius-Mosotti relation. Q. 4 [a] Write a brief note on Ferromagnetic substances. Explain and derive Weiss theoferromagnetism. Q. 4 [b] Explain Ferro, Ferri and Antiferro magnetic order. What is Antiferro electric effect? 	ory of [07]
 Q. 4 [a] Explain Hysteresis loop. What is Curie Temperature? Explain Curie – Weiss la susceptibility of ferromagnetic substances. Q. 4 [b] Give the full form of NMR and Explain it in detail with it's applications. 	w for [07] [07]
Q. 5 [a] Write note on applications of Ferrofluid. Q.5 [b] Explain any two synthesis techniques of Ferrofluid. State the importance of Surfact preparation of a Ferrofluid. OR	[07] tant in [07]
Q. 5 [a] What is Ferrofluid? Write the brief note on Ferrofluid. Discuss any two physical properties of Ferrofluid. Q. 5 [b] Explain the behavior of Ferrofluid when the magnetic field is applied to it. Explain magnetic properties of Ferrofluid.	[07] the [07]