M. Sc. (Statistics) (Semester - III) Examination December - X: Linear Models & Design of Experiments

Time: 2 hours Mar			s: 70
Q1	. a	Let Y_1 , $I=1$, 2, 6 are independent variates with common variance σ^2 and E $(Y_1)=\theta_1+\theta_4$, E $(Y_2)=\theta_2+\theta_4$, E $(Y_3)=\theta_3+\theta_5$, E $(Y_4)=\theta_4+\theta_5$, E $(Y_5)=\theta_1+\theta_6$, E $(Y_6)=\theta_2+\theta_6$. i) Show that $\theta_1-\theta_2$ is estimable. Find its BLUE and the variance of the BLUE	
		DLOC.	
	b)	Show that $\theta_1 + \theta_2$ is not estimable. Let Y_1 , Y_2 and Y_3 are independent random variables with a common variance σ^2 and $E(Y_1) = \theta_1 + \theta_2$, $E(Y_2) = \theta_2 + \theta_3$, $E(Y_3) = \theta_1 + \theta_3$. Prove that $b_1\theta_1 + b_2\theta_2 + b_3\theta_3$ is estimable if and only if $b_3 = b_1 + b_2$ and under this condition, obtain the Best Linear Unbiased Estimator of	6 .
		$b_1\theta_1 + b_2\theta_2 + b_3\theta_3$.	
Q1	a) b)	State and prove Gauss – Morkoff's Theorem on linear estimation	8
		Rank(A') = Rank(A',b).	
Q2	a)	Define the following terms in Designs: i) Connectedness,	8
		ii) Balancing,	
		iii)Orthogonality, iv)iv) Incidence Matrix and	
	b)	In usual notation prove that (i) $V(Q) = \sigma^2 C$ (ii) $V(P) = \sigma^2 D$ (iii) $Cov(P, Q) = -\sigma^2 D$	6
		OR	
Q2	a)	Prove that necessary and sufficient condition for a block design to be balanced is that all the non zero eigen roots OF C matrix are equal.	8
	b)	[1 1 1 0] whether the block design with incidence matrix N	6
		$\begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}$ is connected, balanced and orthogonal	

Ų3	a,	B.I.B.D, prove that- i) $bk = vr$, ii) $r(k-1) = \lambda$ ($v-1$), and	<u> </u>
	b)	iii) $b \ge v$. State and prove necessary and sufficient condition for a block design to be orthogonal.	5
		OR	
Q3	a)	Derive the Intra-block analysis of a BIBD.	9
	b)	Compare the efficiency of B.I.B.D. with R.B.D.	5
Q4	a)	For a Symmetric BIB Design (v, r, λ) . Prove that-	6
		If v is even, $(r - \lambda)$ must be a perfect square.	Ů
	b)	Construct a BIBD with v=9, b=12, r=4, k=3, $\lambda = 1$ using mutually orthogonal letin square design	8
~ 4	,	OR	
Q4	a)	Give complementary design, derive design and residual design of following BIBD.	9
		(1,3,4,5,9) $(2,4,5,6,10)$ $(3,5,6,7,11)$ $(4,6,7,8,1)$ $(5,7,8,9,2)$ $(6,8,9,10,3)$ $(7,9,10,11,4)$ $(8,10,11,1,5)$ $(9,11,1,2,6)$ $(10,1,2,3,7)$ $(11,2,3,4,8)$	
	b)	Construct a RIRI) with management of 1 of the second	5
Q5	a)	Define the terms:-	_
	,	i) Symmetric Factorial Design,	6
		ii) Partial and Total confounding,	
		iii) Generalized Interactions.	
	b) .	Explain main effect and interaction for 3 ² design. OR	8
Q5	a)	Define the device of 'confounding' and discuss the Yates procedure to analyse the 2 ⁿ factorial design	9
	b)	Explain the method of confounding 2 independs to the	_
	-)	Explain the method of confounding 2 independent interaction $in2^m$	5