paper-14 Relativity-II -3475

Total Marks-70

OC4-2015

Time: 2 Hours

Q-1 (a) Prove that for a Euclidean space reference rectangular coordinates geodesic are lines.	red to straight (7)
(b) Define the following term.	(7)
i. Christoffel's symbols of type-I aii. Geodesic.iii. Null geodesics.	
OR	
Q-1 (a) Show that covariant derivatives of fu tensor vanish.	ndamental (7)
(b) In usual notation prove that $t^i;_k t^k = 0$	(7)
Q-2 (a) If A_{ik} is an antisymmetric tensor of s prove that	
$A_{ik};_{m}+A_{km};_{i}+A_{mi};_{k}=A_{ik},_{m}+A_{km},_{i}+A_{mi}$	
(b) Define Riemann's symbols of the sec first kind also prove that Rhijk = -Rihjk	ond kind and
OR	
Q-2 (a) Prove that $R_{hijk} + R_{hjki} + R_{hkij} = 0$	(7)
(b) Prove that $R_{ijk}^l + R_{jki}^l + R_{kij}^l = 0$	(7)
Q-3 (a) If $g_{ij}=0$ for $i\neq j$ and i,j,k are unequal s show that	uffixes then (7)
(i) $\Gamma_{jk,i} = 0$ (ii) $\Gamma_{jk}^i = 0$ (iii) $\Gamma_{ij,i} = \frac{1}{2} g_{ii,j}$	
(b) Obtain the non vanishing 3 index symmetric $ds^2 = -dx^2 - dy^2 - dz^2 + f(x,y,z)c^2$	abols for the
OR	;
Q-3 Prove that Geodesic equations are reduce Newtonian equations of motion in case of field.	ible to of weak station (14)
Q-4 (a) State and prove Birkhoff's theorem.	(7)
(b) Find Christofell symbols for	(7)
$ds^2 = a^2 d\theta^2 + a^2 \sin 2\theta d\varphi^2$	•
OR	
Q-4 Discuss with all details Nordstrom solut	ions. (14)

Q-5 (a) (i) Discuss Weyl's Postulate.

- (7)
- (ii) Discuss Cosmological principle.
- (b) What are the Crucial tests in Relativity? Discuss one of them. (7)

OR

Q-5 Derive the space time metric for F-R-W
Cosmological models also derive: (14)

(i)
$$s^2 = \frac{8\pi\rho}{3} s^2 - k$$

$$(ii)\frac{d}{ds}(\rho s^3) = -3 ps^2$$