M.SC. STATISTICS [SEMESTER IV] EXAMINATIONS PAPER -14

Advance Operation Research

Hour:2 CODE - 3579 Mark:70

Q 1 (A) Explain the Hungarian method of solving an Assignment problem.

(8)

(6)

(B) Use simplex method to solve the following problem.

Maximize $Z = 7x_1 + 9x_2$

subject to $2x_1 + 7x_2 \le 28$ $3x_1 + 2x_3 \le 460$ $3x_1 + 4x_2 \le 420$

$$x_1, x_2, x_3 \ge 0$$

OR

Q 1 (A) Consider the following LPP model, Find optimal solution for given model. (8)

$$Z_{max} = 3x_1 + 9x_2$$

Sub. to,

$$x_1 + 4x_2 \le 8 x_1 + 2x_2 \le 4 x_1, x_2 \ge 0$$

(B) Discuss the rules for constructing the dual problem and find solution by using (6) rules for given problems:

(i)
$$Z_{max} = 2 x_1 + 3 x_2 + x_3$$

Subject to
$$4x_1 + 3 x_2 + x_3 \le 6$$
$$x_1 + 2 x_2 + 5 x_3 \le 4$$
$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$$

(ii)
$$Z_{min} = 4x_1 + x_2$$

Subject to,
 $4x_1 + 3x_2 \ge 6$
 $x_1 + 2x_2 \le 4$
 $x_1, x_2 \ge 0$

 $Q\ 2\ \ \mbox{ Use Big M- method to solve the following problem.}$

(7)

(A) Maximize $Z = 6X_1 + 4X_2$

Subject to : $2X_1 + 3X_2 \le 30$,

$$3X_1 + 2X_2 \le 24$$
,
 $X_1 + X_2 \le 3$

$$X_1 \le 0, X_2 \le 0.$$

(B) Describe Inventory Cost Components.

(7)

OR

Q 2 (A) Solve the following linear programming problem using two phase method Z_{max} : $5x_1-4x_2+3x_3$

(7)

Subject to:

$$2x_1+x_2-6x_3=20$$

 $6x_1+5x_2+10x_3\ge 76$
 $8x_1-3x_2+6x_3\ge 50$
 $X_1,x_2,x_3\ge 0$

- (B) State and prove the fundamental theorem of duality in linear program.
- Q 3 (A) What is an Integer Programming? Explain the 'Branch and Bound' method for solving (7) Integer Programming Problem.
 - (B) Derive an expression for steady state probability, $\{P_{n_i} \ n \ge 0\}$ for M/M/1(∞ : FIFO) system. Also obtain expression for various measures of effectiveness for the system.

OR

Q 3 (A) Solve the following inventory model with given information

(7)

(7)

Period (i)	Demand (Di)	Setup Cost (Ki)
1	76	98
2	26	114
3	90	185
4	67	70

The initial inventory x1 is 15 units, the unit production cost is Rs. 2, and the unit holding cost per period is Rs. 1 for all the periods. Find an optimal transportation schedule. Compute optimal Cost.

(B) Apply MODI method for Given transportation problem,

(7)

WAREHOUSE	FACTORIES				
	A	В	С	D	REQUIRMENTS
1	19	30	50	10	7
2	70	30	40	60	9
3	40	8	70	20	18
AVAILABILITY	5	8	7	14	

Q4(A) Solve the following game by using the principle of dominance and find the game (7)

value.

	Player B				
		I	II	III	IV
	I	3	2	4	0
Player A	II	3	4	2	4
	III	4	2	4	0
	IV	0	4	0	8

(7)

(7)

(B) There are seven jobs, each of which has to go through the machines M1, M2 and M3 in the order. Processing times in hours are given as below:

Job 2 6 7 Machine M1 7 8 7 6 6 8 5 Machine M2 1 3 3 2 4 Machine M3 5

Find Total elapsed time and Idle times of Machines.

OR

- Q4(A) Write Difference Between PERT-CPM.
 - (B) For the M|M|1 with infinite number in the system, show that,
 - I) The expected number in the queue given that the queue is not empty = $\frac{1}{1-\rho}$ (7)
 - II) The expected waiting time in the queue for those who must wait = $\frac{1}{\mu \lambda}$
- Q 5(A) State and prove Kuhn-Tuckers necessary and sufficient conditions in Non-Linear (7) Programming Problem.
 - (B) Describe Single Item Inventory Control Models without Shortages with (i) Constant (7) rate of demand and (ii) Different Rate Of Demand.

OR

Q 5 Project consists of following activities duration of each activity is given in the following table: (14)

Activity	Preceding	Time estimay	Time estimayes(Weeks)		
	Activity	Optimistic	Most likely	Pessimistic	
Α	-	04	07	16	
В	-	01	05	15	
С	A	06	12	30	
D	A	02	05	08	
Е	С	05	11	17	
F	D	03	06	15	
G	В	03	09	27	
H	E,F	01	04	07	
I	G	04	19	28	

- (i) Draw the PERT network diagram.
- (ii)Identify the critical path and determine the mean projection time.
- (iii) Find the probability that the project is completed in 36 weeks.